Avión cisterna KC-135R Stratotanker con cazas F-15 y F-16 en una misión de entrenamiento de repostaje en vuelo.
El
reabastecimiento en vuelo, también llamado reabastecimiento aéreo o repostaje
aéreo (en inglés air-to-air refueling o AAR), es un medio versátil para aumentar el
alcance y la autonomía en vuelo de aviones militares. El reabastecimiento en
vuelo es una operación cotidiana realizada por los aviones militares. Las
operaciones de AAR implican una proximidad entre el avión nodriza y el
receptor. Se transfiere el combustible entre las nodrizas y receptores mediante
una manguera flexible y una cesta que contiene la válvula o una lanza rígida
llamada “boom”. Los países de la OTAN tienen una normativa común para este tipo
de operaciones en la publicación ATP-56(A).
Aunque
los aviones civiles también están equipados con sistemas de reabastecimiento en
vuelo mediante pértigas, no hay ningún registro acerca del uso de estos.
Historia
La
relativamente baja autonomía de los aviones caza y UAV les hace necesitar de
“gasolineras aéreas” que les permitan alcanzar sus objetivos. Antaño esta labor
recaía fundamentalmente en bases cercanas a las operaciones o en portaaviones
que desempeñaban esa misma función.
La
aparición de los tanqueros ha ido eliminando progresivamente la necesidad de
bases cercanas para ese fin al generar puntos en el aire que suplen esa misma
función.
El
primer repostaje aéreo de la historia podría ser el que se
realizó el 12 de noviembre de 1921 por Wesley May, Frank Hawks4 y Earl Daugherty y
es en el 1923 cuando por primera vez la Armada Norteamericana realiza en el
aire un repostaje aéreo con manguera en primera línea.
Durante
los años 1930 se produjo el desarrollo definitivo del restablecimiento aéreo de
forma práctica, siendo utilizado de forma clave en la Segunda Guerra Mundial,
la primera en la que la aviación jugó un papel determinante. De hecho es en 1949
y durante esta Guerra cuando por primera vez tiene lugar un proceso de
repostaje en un B29 modificado denominado KC-97.
A
finales de los años 50 Boeing introduce el “Boom” como nuevo sistema de
repostaje empleando un sistema de visión directa en sus KC-135 para realizar la
operación. El operario se tendía literalmente en la zona de cola del tanquero
para ver a través de una ventana practicada en la misma al avión receptor y
para controlar la operación desde dicha ubicación.
Pero no
será hasta finales de los 80 cuando introduzca en una misma aeronave los
Sistemas de Boom y Manguera y Cesta. El negocio de los tanqueros en lo que al
botalón se refiere, fue controlado casi de forma exclusiva por Boeing desde la
aparición del Botalón (Boom) hasta que a principios de siglo, Airbus Military
decidiera entrar en el mismo mediante el diseño y desarrollo de un nuevo
botalón de características similares al de Boeing pero con una capacidad de
trasvase superior. Dicho sistema de abastecimiento, si bien estaba copiado del
de Boeing en cuanto a la mayoría de los detalles, introdujo una innovación
importante en cuanto a la forma de supervisar la operación por parte del
operario. El sistema contaba con un subsistema de visión remota basada en el
empleo de cámaras y monitores que permitían al boomer realizar la operación
desde la propia cabina del avión.
Airbus
desarrolló un prototipo inicial basado en su A310, en él colocó un sistema de
visión compuesto por monitores CRT, cámaras PAL en blanco y negro y grabación
de señal de vídeo jpeg entre otros detalles.
Pero
fue al pasar al modelo definitivo en su A330 MRTT, cuando en un alarde
de tecnología dio un salto cuantitativo e introdujo por primera vez monitores
digitales de cristal líquido en color, cámaras digitales de alta resolución,
fibra óptica de transmisión de datos y compresión y encriptación de la señal de
vídeo. El resultado fue espectacular y mereció el Top Award 2010 dentro del
seno de la compañía.
La
persona responsable de ese diseño fue Alberto Adarve, ingeniero e inventor
español, quien se encargó de ese diseño a la vez que de patentar el sistema de
visión empleado.
Años
más tarde sería la propia Boeing la que copiaría ese sistema de visión remoto
que introduciría en su KC con destino a la USAF.
Pero la
operación seguía siendo consideraba como arriesgada y de ahí el porqué de su
uso solamente en el ámbito de la aviación militar. En 2015, la misma compañía
responsable del diseño del sistema de visión inicial decidió buscar un camino
para reducir la complejidad de la operación introduciendo un nuevo dispositivo
de control del botalón al que denominó “Haptix” y que permite controlarlo con
una sola mano y de forma mucho más intuitiva que la tradicional de dos
joysticks.
El
nuevo dispositivo no solo es más intuitivo, al tratarse de un elemento análogo
al propio botalón, sino que además posee propiedades hápticas que avisan al
operador (mediante vibraciones en su mano) de operaciones prohibidas o de la
cercanía de superficies de colisión próxima. Fue patentado en 2016 por el
propio Alberto Adarve. Antes de su
presentación en el ARSAG9 de ese mismo año.
Además,
y gracias a un subsistema de visión auxiliar al ya existente en el sistema, el
Haptix es capaz de realizar la operación de forma autónoma, moviéndose solo y
haciendo que la operación se convierta en un procedimiento de supervisión para
el operador. Esto abrirá la puerta al repostaje automático en vuelo con Botalón
que fue presentado igualmente en el meeting anual del ARSAG en 2016 por Adarve
con vídeos de un sistema ya funcionando en escala 1:10.
Sistemas
Se usan
dos métodos diferentes para conectar un avión cisterna a una aeronave
receptora: el sistema de pértiga (o percha) y receptáculo, y el sistema de
sonda y cesta. El primer sistema menos popular ala-ala ya no se utiliza, el
avión receptor también puede volar parasitando combustible del avión cisterna.
Pértiga
Un C-5 Galaxy se aproxima a la pértiga de un KC-135R.
La
pértiga o percha de reabastecimiento en vuelo es un tubo rígido telescópico con
superficies de control de vuelo móviles que un operario del avión cisterna
extiende e inserta en un receptáculo de la aeronave receptora. Todos los
aviones cisterna equipados con este sistema (KC-135 Stratotanker, KC-10
Extender, etc.), tienen una única pértiga, y solo pueden reabastecer
simultáneamente a una aeronave con este mecanismo.
Ventajas
- Se pueden conseguir mayores caudales de combustible (hasta 1000 galones por minuto en el KC-135) gracias al mayor diámetro del conducto de la pértiga, requiriendo menos tiempo para completar las operaciones de reabastecimiento en comparación con los sistemas sonda-cesta.
- El método de pértiga elimina la necesidad de que el piloto de la aeronave receptora (muchas veces aviones grandes y poco maniobrables) tenga que realizar maniobras de precisión para introducir la sonda en la cesta, que es fácil de realizar con aeronaves pequeñas como los cazas, pero muy difícil o imposible con aviones grandes.
- Un avión cisterna con sistema de pértiga puede ser equipado con un adaptador que lo hace compatible con las aeronaves provistas de sonda para cesta.
Desventajas
- El coste de formar y emplear al operario de la pértiga.
- Complejidad de diseño del avión cisterna.
- Mantener operativo el avión cisterna, costo de vuelo por hora.
- Solo puede repostar un avión receptor simultáneamente.
- No puede ser usado para reabastecer a la mayoría de helicópteros.
- Los aviones de caza no pueden recibir el combustible al caudal máximo de la pértiga, esto requiere que los aviones cisterna reduzcan la presión de repostaje cuando atienden a ese tipo de aviones, reduciendo la ventaja del sistema de pértiga sobre el sistema de sonda-cesta.
Sonda-cesta
Este
método emplea una manguera flexible que cuelga del avión cisterna, se extiende
para que el avión receptor de combustible pueda interceptarla. En el extremo de
la manguera, está unida mediante una válvula, con una cesta o canasta (parecida
a un volante de bádminton) que estabiliza la manguera y proporciona un embudo,
que facilita la inserción de la sonda de la aeronave receptora.
La sonda de la nave receptora de combustible, es un brazo o mástil rígido, que situado en su morro o fuselaje central, suele estar retraída cuando no se usa, especialmente en aviones veloces, como el F-14 Tomcat, el Boeing F/A-18 Super Hornet, el Eurofighter Typhoon, y el Panavia Tornado, se extiende al costado de la nave para interceptar la canasta.
Un A4D-2 re-abasteciendo un F8U-1P.
En
otros aviones de peso medio, se adaptó con éxito una sonda externa fija, como
en el avión de guerra electrónica Grumman EA-6B Prowler, frente al parabrisas
de la cabina de mando, en los cazas franceses Dassault Rafale y Dassault Mirage
2000, permanece al costado derecho del cono delantero del radar, con mejoras
posteriores se instalaron en el caza Dassault Mirage F1.
También
se puede instalar en el costado del fuselaje central, en los aviones de ataque a
tierra McDonnell Douglas AV-8B Harrier II, el caza supersónico Mirage 50, en el
caza Atlas Cheetah y en la versión mejorada del caza Kfir C.10, esto les
permite despegar con mayor cantidad de armamento, para luego recibir
reabastecimiento aéreo de combustible y aumentar su alcance en combate, también
pueden recibir más combustible en el vuelo de retorno, para poder alcanzar la
base aérea de donde despegaron, debido a las limitaciones para transportar
combustible interno.
Este
sistema fue utilizado con éxito, en los aviones embarcados en los portaaviones
clase Nimitz, a los que se les adaptaba un tanque de combustible externo de
reabastecimiento, para reabastecer en vuelo a otros aviones caza del
portaaviones, como en el Douglas A-4 Skyhawk, el avión de ataque Grumman A-6
Intruder, y el avión de reconocimiento antisubmarino Lockheed S-3 Viking.
Recientemente,
se han adaptado nuevos tanques de combustible externo bajo el fuselaje central,
"Pod de reabastecimiento", en aviones caza de peso medio, y en
aviones caza pesados de largo alcance, para poder reabastecer a otros aviones
caza, con este sistema de canasta y manguera flexible, como el caza naval
pesado de largo alcance Sujoi Su-33 de Rusia, el caza de base en tierra MiG-35,
y el nuevo caza naval Boeing F/A-18 Super Hornet de la US Navy.
Ventajas
- Permite ahorrar costos en la compra del avión cisterna convencional.
- Ahorra costos de mantenimiento y hora de vuelo del avión cisterna.
- Flexibilidad al poder ser usado por otros aviones caza del inventario.
- Estos aviones pueden defenderse y participar en el combate.
- Pueden sobrevivir en un combate aéreo moderno contra otros aviones caza.
- Pueden ingresar a la zona de combate junto a otros aviones de ataque.
- Se puede equipar con este sistema a varios aviones del inventario de la Fuerza Aérea.
- Pueden acompañar a los aviones de combate en misiones de penetración profunda.
- Pueden operar desde portaaviones y bases aéreas no preparadas.
- Puede reabastecer helicópteros.
Tornado GR4 repostando de la cesta de un avión cisterna VC-10 de la RAF sobre Irak.
F/A-18E Super Hornet siendo reabastecido por un F/A-18F Super Hornet.
Boeing 707-331B(KC) del Ejército del Aire de España realizando un repostaje en vuelo simulado con dos cazas EF-18.
En
combate
Luego
de la Guerra de Corea, los nuevos bombarderos con motores de turbina, más
consumidores de combustible que los aviones con motores de hélices
convencionales, necesitaban permanecer más tiempo en el aire, para aumentar su
alcance y capacidad de combate, los aviones transportaban los primeros tanques
de combustible externos que podían ser desechados.
Durante
toda la Guerra Fría, permitieron que los nuevos aviones bombarderos de larga
distancia, como el bombardero supersónico Convair B-58 Hustler, para que
pudieran permanecer en misiones de patrulla permanente, sobre el mar, frente a
Japón y rodeando las fronteras de la Unión Soviética.
En la
guerra de Vietnam, los bombarderos Boeing B-52 Stratofortress necesitaban
reabastecimiento en vuelo, para poder llegar hasta Vietnam desde bases aéreas
en Estados Unidos y Europa, este sistema se utilizó con mucho éxito en aviones
embarcados en los portaaviones de la US Navy.
En la
Guerra del Líbano de 1982 y el primer ataque a Libia, aviones bombarderos
despegaron de bases militares de Estados Unidos y Europa para respaldar a
Israel y recibieron reabastecimiento aéreo de combustible volando sobre España
y el Mar Mediterráneo.
En la
Guerra de las Malvinas permitieron que pequeños aviones de combate Súper Etendard
y A-4 Skyhawk de la Argentina, realizaran varias misiones de ataque contra
barcos del Reino Unido a largas distancias, recibiendo combustible en vuelo
para la misión de ida y vuelta, desde aviones cisterna KC-130 Hércules, para
poder alcanzar las islas. Los bombarderos británicos Avro 698 Vulcan, llegaron
a las islas volando desde la isla Ascensión, para misiones de bombardeo con
este sistema de reabastecimiento de combustible en medio del océano Atlántico.
En las
Guerras Yugoslavas por aviones de la OTAN, para mantener los acuerdos de cese
al fuego y evitar los ataques contra ciudades pobladas, durante los
enfrentamientos entre grupos armados por la secesión de los diferentes Estados.
En la
Guerra del Golfo para el éxito de la Operación Tormenta del Desierto; la
invasión a Irak y recientemente, en los ataques a Libia, por lo que muchas
fuerzas aéreas de países pequeños, están considerando equipar su inventario de
aviones de combate, con este sistema de reabastecimiento en vuelo.
Fuente:
https://es.wikipedia.org